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We apply the adiabatic nuclei convergent close-coupling method to electron-impact dissociative
excitation of H2 in the low energy regime. Differential and integrated cross sections are presented for
excitation of the b 3Σ+

u state, the primary pathway to dissociation of H2 at low energies. Agreement
with experiment is satisfactory. Results are also presented for the isotopologues D2, T2, HD, HT,
and DT, which show a pronounced isotopologue effect near threshold in both the differential and
integrated cross sections.

I. INTRODUCTION

Electron-impact dissociative excitation of H2 plays an
important role in astrophysics, atmospheric physics, and
plasma modeling. Electron interactions with H2 con-
tribute to the heating and cooling of the Jovian and
Saturnian atmospheres, and play important roles in the
cooling of molecular clouds, a mechanism for stellar for-
mation [1, 2]. The same processes also contributed to
the energy loss of plasma electrons during the formation
of the interstellar medium [3]. Molecules such as H2 can
form in the divertor region of tokomak reactors, where
external cooling results in a steep temperature gradient.
Collisionally induced dissociation of H2 is a major fac-
tor governing the dynamics and properties of the plasma
edge, which in turn affects the performance of the core
plasma [4].

At low energies the primary pathway to dissociation
of H2 is through excitation of the b 3Σ+

u state. This is a
purely dissociative state and produces neutral fragments
H(1s)+H(1s) with considerable kinetic energies [5]. Mea-
surements of the b 3Σ+

u excitation integrated cross sec-
tions (ICS) and differential cross sections (DCS) are
available at incident energies of 9.2 eV and above, see
Nishimura and Danjo [6], Khakoo and Segura [7], and
Hall and Andric [8]. The review of Yoon et al. [9] pro-
vided a recommended ICS that follows these measure-
ments. Agreement between the measurements is reason-
able up to about 15 eV, although the experimental un-
certainties are relatively large. The recommended cross
section follows the measurements of Khakoo and Segura
[7] up to 20 eV, however there is disagreement at the cross
section peak between this experiment and the measure-
ments of Nishimura and Danjo [6], which are significantly
lower.

A large number of calculations of the b 3Σ+
u excita-

tion have previously been performed in the fixed-nuclei
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(FN) approximation, see for example, the calculations by
Schneider and Collins [10], da Costa et al. [11], Branchett
et al. [12], Gorfinkiel and Tennyson [13], Fliflet and
McKoy [14], and earlier calculations referenced therein.
These calculations are all in significant disagreement with
each other, and with the recommended data [9].

Recently, Zammit et al. [15] provided a comprehen-
sive set of accurate excitation, ionization and grand total
cross sections for e−-H2 scattering, obtained using the
single-center molecular convergent close-coupling (CCC)
method. These calculations were performed in the FN
approximation, with the internuclear distance fixed at
the mean separation Rm = 1.448 a0 of the ground vibra-
tional state. Convergence of the CCC results was demon-
strated over the entire 10–300-eV energy range, and the
calculation of the b 3Σ+

u ICS predicted a sharp peak at
approximately 11.5 eV. The recommended data of Yoon
et al. [9] are in substantial disagreement with the CCC
results. Given the significance of the low-energy b 3Σ+

u

excitation, it is important to determine an accurate cross
section for this excitation process.

The FN approximation is not valid near excitation
thresholds, where the vibrational motion of the nuclei
has a significant effect. In this energy regime the adi-
abatic nuclei (AN) approximation is a more accurate
approach. The AN approximation has been previously
applied to e−-H2 excitation, for example, the calcula-
tions by Trevisan and Tennyson [16], Celiberto et al.
[17], and Rescigno and Schneider [18]. As with the FN
calculations, these AN calculations are in significant dis-
agreement with each other. The calculation of Trevisan
and Tennyson [16] predicted a peak lower than both the
Khakoo and Segura [7] and Nishimura and Danjo [6] mea-
surements, and shifted to about 12.5 eV. The calculation
of Celiberto et al. [17] was in reasonable agreement with
the R-matrix calculation below 9 eV, but in substantial
disagreement at higher energies, particularly in predict-
ing a peak closer to 15 eV.

The success of the molecular CCC technique at above-
threshold energies, and the need for accurate collision
data over the entire range of impact energies for the ex-
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citation of the b 3Σ+
u state, motivates the present low-

energy AN calculations. We also investigate the low-
energy dissociation behavior of the H2 isotopologues (D2,
T2, HD, HT, and DT), which we expect will be impor-
tant in tokamak fusion plasma modeling. It is worth
noting that the AN CCC method was previously used to
investigate positron collisions with H2 [19], and electron
collisions with H+

2 [20, 21], yielding good agreement with
experiment.

II. THEORY

The molecular CCC method for e−-H2 scattering has
been described in detail in Refs. [15, 21–23]. Here we
give a brief overview. Atomic units are used throughout
unless specified otherwise.

A. Molecular CCC method

The molecular CCC method utilizes the Born-
Oppenheimer approximation to separate the electronic
and nuclear degrees of freedom, allowing the electronic
scattering problem to be solved in the FN approxima-
tion. The CCC method is formulated in the body-frame,
utilizing the spherical coordinate system, with the origin
set at the midpoint between the two nuclei and the z axis
aligned with the internuclear axis R. In what follows we
suppress the explicit dependence on the internuclear sep-
aration R in the FN formulation of the CCC method and
restore it later to make the presentation more transpar-
ent.
Molecular electronic target states are constructed by

diagonalizing the target electronic Hamiltonian HT in a
basis of antisymmetrized two-electron configurations for
each set of the conserved quantum numbers (mt, πt, st),
where mt is the total target angular momentum projec-
tion, st is the spin, and πt is the parity:

ΦN
n (x1, x2) =

∑

αβ

C
(n)
αβ φα(r1)φβ(r2)X(sn, vn), (1)

where x1 and x2 are used to denote the spatial and spin
coordinates of the electrons, and each n represents a set

of the conserved quantum numbers. The coefficients C
(n)
αβ

are eigenvector components resulting from the diagonal-

ization procedure and satisfy C
(n)
αβ = (−1)snC

(n)
βα to en-

sure the antisymmetry of the two electron configurations
in Eq. (1). The spin function is given by

X(s, v) =
∑

m1m2

Csv
1
2m1

1
2m2

χm1
(σ1)χm2

(σ2), (2)

where Clm
l1m1l2m2

is a Clebsch-Gordan coefficient. The
one-electron functions in Eq. (1) are given by

φα(r) =
1

r
ϕkαlα(r)Ylαmα

(r̂), (3)

where l is the angular momentum, and ϕkl are the La-
guerre basis functions

ϕkl(r) =

√

αl(k − 1)!

(k + l)(k + 2l)!
(2αlr)

l+1

× e−αlrL2l+1
k−1 (2αlr), k = 1, . . . , Nl. (4)

Here αl are the exponential fall-off parameters, L2l+1
k−1 are

the associated Laguerre polynomials, and Nl is the num-
ber of functions for a given value of l. The resulting

target pseudostates
{

ΦN
n

}N

n=1
satisfy

〈ΦN
n′ |HT |ΦN

n 〉 = εNn δn′n, (5)

where εNn is the energy of the state ΦN
n and N is the

number of pseudostates.
The total scattering wave function is expressed as a

multichannel expansion over the target states:

Ψ
N(+)
i (x0, x1, x2) = AψN(+)

i (x0, x1, x2)

= A
N
∑

n=1

fN(+)
n (x0)Φ

N
n (x1, x2), (6)

where x0 is the projectile spatial/spin coordinate, (+)
denotes outgoing spherical wave boundary conditions,
A = 1 − P01 − P02 is the antisymmetrization operator,
and where P0i is the space exchange operator.
Substituting the expansion (6) into the Schrödinger

equation

(E(+) −H)Ψ
N(+)
i = 0 (7)

results in a set of momentum-space Lippmann-Schwinger
equations for the T matrix

〈k(−)
f ΦN

f |TN |ΦN
i k

(+)
i 〉 = 〈k(−)

f ΦN
f |V |ψN(+)

i 〉, (8)

where |k(±)〉 is a projectile distorted wave with energy
ǫk = k2/2.
The projectile wave function is expanded in partial

waves

|k(±)〉 = 1

k

∑

L,M

iLe±iδLY ∗

LM (k̂)|kL〉, (9)

where δL is the distorting phase shift and the sum is trun-
cated at some Lmax. This allows a set of close-coupling
equations to be formulated for the partial wave T ma-
trix. These equations are formed for each total symme-
try specified by the total angular momentum projection
M , parity Π, and spin S:

TMΠS
fLfMf ,iLiMi

(kf , ki)

= VMΠS
fLfMf ,iLiMi

(kf , ki) +

N
∑

n=1

∑

L′M ′

∑

∫

k

dk

×
VMΠS
fLfMf ,nL′M ′(kf , k)T

MΠS
nL′M ′,iLiMi

(k, ki)

E(+) − εk − εNn + i0
, (10)
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and are solved by standard techniques [23, 24].
The FN DCS analytically averaged over orientations is

given by [15, 23]

dσS
f,i(R,Ein)

dΩ
=

∑

j

DSj
f,iPj(cos θ), (11)

where Pj is the Legendre polynomial and the DCS coef-
ficients are

DSj
f,i = π2 qf (R;Ein)

qi

∑

M,Π
M ′,Π′

∑

Lf ,Li

Mf ,Mi

∑

L′

f ,L
′

i

M ′

f ,M
′

i

iLi−Lf+L′

i−L′

f

× (−1)M
′

f+M ′

i L̂iL̂
′

iL̂f L̂
′

f (2j + 1)−1

× TMΠS
fLfMf ,iLiMi

(R,Ein)T
M ′Π′S∗

fL′

f
M ′

f
,iL′

i
M ′

i
(R,Ein)

× Cj0
Li0,L′

i
0C

jM ′

i−Mi

Li−Mi,L
′

i
M ′

i
C

jMf−M ′

f

LfMf ,L
′

f
−M ′

f

× Cj0
Lf0,L′

f
0δMi−M ′

i
,Mf−M ′

f
. (12)

Here, L̂ =
√
2L+ 1, and qf , qi are the outgoing and

incident projectile momenta, respectively:

qf (R;Ein) =
√

2 [Ein − εf,i(R)] (13)

qi =
√

2Ein. (14)

Note that qf depends only on the incident energy
Ein and the electronic excitation energy εf,i(R) =
εf (R) − εi(R). The on-shell physical FN T matrix
TMΠS
fLfMf ,iLiMi

(R;Ein) in Eq. (12) is obtained from the

solution of the Lippmann-Schwinger equations (10) [22],
where we have restored the explicit R-dependence.
The FN ICS σS

f,i are obtained by integrating Eq. (11).
As a result of the orthogonality property of the Legendre
polynomials, only the j = 0 term of the summation is
non-zero after integration over solid angle, which gives

σS
f,i(R;Ein) =

∫

dσS
f,i

dΩ
dΩ = 4πDS0

f,i

= 4π3 qf (R;Ein)

qi

∑

M,Π
Lf ,Li

Mf ,Mi

∣

∣

∣
TMΠS
fLfMf ,iLiMi

(R;Ein)
∣

∣

∣

2

.

(15)

B. Adiabatic nuclei method

Bound target vibrational wave functions χnvn(R) are
obtained by diagonalizing the Born-Oppenheimer Hamil-
tonian

H = − 1

2µ

d2

dR2
+
J(J + 1)−m2

n

2µR2
+ εn(R) (16)

in a basis of nuclear functions which have the same form
as the one-electron functions (3). Here µ is the re-
duced mass of the molecule (calculated for each isotopo-
logue using 1836.15, 3670.48, and 5496.92 for the proton,

deuteron and triton mass, respectively), J is the rota-
tional quantum number, mn is the angular momentum
projection, and εn(R) is the potential energy function
for the electronic state ΦN

n . At present we remove the
rotational dependence of the vibrational wave functions
by setting J = 0. Note that vibrational wave functions
depend only weakly on J , since the rotational term of
Eq. (16) is of the order of 1/µ ≈ 10−3 and is therefore
negligible compared to the potential energy term. The
basis size is chosen to yield convergent bound state solu-
tions of the Schrödinger equation

〈χnv′

n
|H|χnvn〉 = ǫvnδv′

nvn
, (17)

where ǫvn is the energy of the bound vibrational wave
function χnvn . The vibrational wave functions satisfy
the following closure property

∑

∫

vn

χnvn(R)χnvn(R
′) = δ(R−R′), (18)

where the summation is over the discrete spectrum and
the integration is over the continuum.
Following the AN approximation [25], the ICS σS

fvf ,ivi

and DCS dσS
fvf ,ivi

/dΩ for the vibrationally resolved tran-

sition ivi → fvf are obtained via the substitution

√

qf (Rm;Ein)T
MΠS
fLfMf ,iLiMi

(Rm;Ein)

→ 〈χfvf |
√

qf (R;Ein)T
MΠS
fLfMf ,iLiMi

(R;Ein)|χivi 〉 (19)

in Eqs. (11), (12), and (15). To obtain the AN T matrix
one has to conduct FN calculations at many internuclear
distances in order to perform accurate integration over R
in Eq. (19).
The closure property (18) is used to obtain cross sec-

tions summed over all final bound vibrational states and
integrated over all final vibrational continuum states,
yielding

dσS
f,ivi

dΩ
=

∑

∫

vf

dσS
fvf ,ivi

dΩ
= 〈χivi |

dσS
f,i

dΩ
|χi,vi〉. (20)

Note that this technique requires the outgoing electron
momentum and FN T matrix in Eq. (19) to be indepen-
dent of the final vibrational state energy. This condition
is satisfied due to the definition of qf in Eq. (13). Clo-
sure relations have been previously utilized to sum cross
sections over final rovibrational states, in the Born ap-
proximation by Peek [26, 27, 28], and in the CCC method
by Zammit et al. [19, 22] and Scarlett et al. [20].
Spin averaged cross sections are obtained using

dσf,ivi
dΩ

=
∑

S

2S + 1

2(2si + 1)

dσS
f,ivi

dΩ
, (21)

where si is the initial target state spin. The same ex-
pressions (20) and (21) hold for the ICS. For scattering
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on the ground state of H2, si = 0 and hence there is only
one spin channel. Furthermore, in this paper we con-
sider only scattering from the ground vibrational level
(vi = 0).
The problem of energy conservation in the AN approx-

imation has been discussed previously, for vibrational ex-
citations by Mazevet et al. [29], and for electronic excita-
tions by Shugard and Hazi [30] and Ficocelli Varracchio
[31]. There is a discrepancy between the true excitation
energy and the FN electronic excitation energy, which
does not consider the vibrational levels. For scattering
on the ground vibrational state the error in the initial
state energy is relatively small over the extent of the
v = 0 wave function, but as the integrand in Eq. (19)
varies with R, the error in the final state energy can
be much larger, except at the classical turning point(s)
of the final state wave function. The corrections sug-
gested by Shugard and Hazi [30] and Ficocelli Varracchio
[31] both require the use of off-shell T -matrix elements.
Stibbe and Tennyson [32] suggested an energy-balancing
method for the b 3Σ+

u AN cross section which fixes the
outgoing electron energy at the correct value for a given
fragment kinetic energy, but varies the incident energy
over R to allow the use of T matrices which are on the
energy shell in the FN formalism. It is not clear how
significant the benefits of the energy-balancing method
[32] are, since without the use of off-shell FN T matri-
ces, the violation of energy conservation is unavoidable.
Because of the larger number of calculations required to
perform accurate interpolation over both energy and R
for the energy balancing method, here we apply the stan-
dard AN method as detailed in the review of Lane [25].
This method has been applied to dissociative processes
in a number of previous works [20, 26–28, 33, 34], yield-
ing results in good agreement with experiment. Peek
and Green [35, 36] showed that the standard AN method
is sufficiently accurate for the dissociative 1sσg → 2pσu
transition in H+

2 at intermediate to high energies.

III. METHODOLOGY

In the previous FN CCC calculations of e−-H2 scatter-
ing [15] we have conducted detailed convergence studies
for the b 3Σ+

u excitation. We found that for incident elec-
tron energies below 12 eV the close-coupling calculations
that include nine states are in good agreement with calcu-
lations that include a larger number of states in the close-
coupling expansion (up to the maximum of 491 states).
Since the effect of inter-channel coupling is weaker at low
energies, and because the AN approach requires a large
number of calculations at many internuclear distances,
here we have performed AN calculations with a model
that includes the following 12 states: X 1Σ+

g , b
3Σ+

u ,

a 3Σ+
g , c

3Πu, B
1Σ+

u , E,F
1Σ+

g , C
1Πu, B

′ 1Σ+
u , and

D 1Πu. Note that Π states enter the close-coupling ex-
pansion twice (for mt = +1 and mt = −1). We have
reserved the notation CCC for models that account for

coupling to ionization channels and CC for the models
that include only the electronic bound states. In addi-
tion to the AN calculations performed with the CC(12)
model, we have also conducted AN calculations with the
CC(48) model to verify the convergence of the AN b 3Σ+

u

cross sections. The latter model contains the first 48
states for R = 1.448. The target wave functions for the
CC(12) and CC(48) models have been obtained with the
same one-electron basis and set of two-electron configu-
rations as described in Ref. [15] for the CCC(491) model.
Each model utilized the same underlying description

of the H2 wave functions. The one-electron functions (3)
were constructed from a Laguerre basis including Nl =
17− l functions up to lmax = 3, with exponential falloffs
ranging from 0.76 to 0.85. The 1sσg one-electron or-
bital was constructed using Nl = 60 − l functions up to
lmax = 8, with αl = 0.9. The CC(12) scattering cal-
culations were performed using a projectile partial-wave
expansion up to Lmax = 6, including all total angular
momentum projectionM , even and odd parity Π and to-
tal spin S = 1/2 channels up to Mmax = 6. Each CC(12)
calculation at a fixed energy and internuclear separation
required approximately 6 hours of CPU time, distributed
over 24 parallel threads on a 12-core Haswell processor.
For the CC(48) model we took Lmax = Mmax = 5, with
each calculation requiring approximately 60 hours, dis-
tributed over 120 parallel threads on 5 processors. We
find that for triplet state excitations the partial wave con-
vergence is readily established with Mmax = 5, not only
at the low energies considered in this work, but across
all energies [15]. This has also been observed in the R-
matrix calculations of Trevisan and Tennyson [16].
Calculations were performed over a range of internu-

clear separations up to R = 2.5, and energies up to 14 eV.
At a given incident energy the R-dependent ICS exhibit
complex resonance structures which shift towards lower
R at higher incident energies. To minimize the number
of calculations required, we utilized a relatively coarse
R mesh (steps of 0.1) in regions where the cross section
is smooth, but used a much finer mesh (steps of 0.01)
around the resonances to ensure the accuracy of the AN
calculations.

IV. RESULTS

In Fig. 1 we present the potential energy curves (PEC)
of theX 1Σ+

g and b 3Σ+
u states obtained using the present

(single-center spherical coordinate) structure model and
compare with the accurate calculations of Kolos et al. [37]
(X 1Σ+

g ) and Staszewska and Wolniewicz [38] (b 3Σ+
u ).

On the same figure we have also presented the ground
state (v = 0) vibrational wave function of H2. We find
that the present structure model is sufficiently accurate
to perform scattering calculations over the range of R
points at which the v = 0 vibrational wave function is
non-zero (below 2.3). To improve the accuracy of the
AN CCC cross sections we have obtained the vibrational
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FIG. 1: Potential energy curves of the X
1Σ+

g and b
3Σ+

u

states of H2 obtained from structure calculations performed
in the present scattering calculation model (points), compared
with the accurate calculations (solid lines) of Kolos et al. [37]
(X 1Σ+

g ) and Staszewska and Wolniewicz [38] (b 3Σ+
u ). The

ground (electronic and vibrational) wave function of H2 is also
shown (dashed line).

wave functions using the accurate PEC of Kolos et al.
[37].

A. Convergence studies

AN calculations of electron-impact excitation of the
b 3Σ+

u state of H2 have been performed in the range of
incident energies from 6 to 14 eV. In Fig. 2 we present
the AN CC(12) b 3Σ+

u cross sections and compare with a
number of AN CC(48) calculations to demonstrate con-
vergence. We also compare the AN results with the
CC(12) and CCC(491) FN cross sections performed at
R = 1.448. The FN CC(12) results have prominent reso-
nance structures near 12 eV. The same resonance struc-
tures were observed in the calculations of Branchett et al.
[12] and Trevisan and Tennyson [16]. The previous FN
CCC(491) calculations were performed over a 1 eV mesh
(at these low energies), and no attempts were made to
map out resonances because it was expected that they
will be averaged over in the AN calculations, as indeed
can be seen from Fig. 2.

B. Comparison of adiabatic and fixed-nuclei

methods

Fig. 2 shows that the CC(12) AN and FN cross sections
are in reasonable agreement by 14 eV. We therefore ex-
pect that the vibrational motion effects become insignif-
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FIG. 2: Electron impact excitation cross section of the b
3Σ+

u

state of H2. Convergence is demonstrated for the AN CC(12)
and CC(48) models described in the text. The FN CCC(491)
and CC(12) calculations performed at R = 1.448 are also
presented.

icant above this energy, and hence the FN results are
sufficient. In Fig. 3 we present the R-dependent b 3Σ+

u

ICS at 9.2, 11.0, 12.2, and 14.0 eV incident energies, ob-
tained from FN calculations performed at a large number
of R points. At a given incident electron energy, the AN
cross section is best approximated by the FN cross sec-
tion when the threshold of the R-dependent ICS σf,i(R)
is much lower than the bond-length R = 1.4. As detailed
by Zhang and Mitroy [39], expanding the R-dependent
ICS via a Taylor series about some R = R0 gives the AN
cross section in the following form:

σf,ivi = σf,i(R0) +

(

dσf,i
dR

)

R0

〈χivi |(R−R0)|χivi〉+ · · · .

(22)

The error is minimized by choosing R0 = Rm = 1.448,
the mean internuclear separation of the v = 0 vibrational
wave function, since the second term of Eq. (22) vanishes.
At low energies, where the threshold of the R-dependent
ICS is near the bond-length, the expansion about Rm is
dominated by higher order terms, and the FN approx-
imation becomes invalid. At higher energies, if the R-
dependent ICS can be approximated by a straight line
over the extent of the wave function, then the FN approx-
imation becomes accurate as higher order terms vanish.
This is indeed the case for the 14 eV cross section. In-
terestingly, Fig. 3 also shows that the resonances in the
R-dependent ICS shift towards lower R as the incident
energy is increased.
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FIG. 3: The R-dependent electron-impact excitation cross
section of the b

3Σ+
u state of H2 at Ein = 9.2, 11.0, 12.2,

and 14.0 eV, demonstrating the shifting of the resonances and
excitation thresholds towards lower R as Ein is increased. The
ground (electronic and vibrational) state wave function of H2

is also shown.

C. Integrated cross sections

The CC(12) model is not expected to be valid at in-
cident energies above approximately 12 eV, as demon-
strated by the disagreement between the CC(12) and
CCC(491) FN results at higher energies (see Ref. [15]
for convergence studies of several FN CCC models). To
produce a recommended CCC cross section, we use the
AN CC(12) results up to 11.5 eV, and the FN CCC(491)
results above 14 eV. In the 11.5–14 eV energy interval, we
take an average of the CC(12) and CCC(491) results, us-
ing a weight function which varies linearly between 11.5
and 14 eV in order to smoothly connect the two cross sec-
tions. These results are presented in Fig. 4 and compared
with the AN R-matrix calculations of Trevisan and Ten-
nyson [16], the AN semi-classical calculations of Celiberto
et al. [17], the AN complex Kohn calculations of Rescigno
and Schneider [18], the measurements of Khakoo and Se-
gura [7], Nishimura and Danjo [6], and Hall and Andric
[8], and the recommended data of Yoon et al. [9]. The
CCC calculations are in good agreement with all three
measurements below approximately 12.5 eV. The CCC
and R-matrix results are in good agreement between 10
and 12 eV and both methods suggest a smaller peak
shifted to lower energies compared to what was found
in experiment. As the CCC and R-matrix calculations
utilize a similar close-coupling expansion, the small dis-
crepancy between the two methods below 10 eV is likely
due to the use of the energy correction method in the R-
matrix calculation, which is expected to have the greatest
effect at energies close to threshold. The present results,

however, are in better agreement with the measurements
of Khakoo and Segura [7] in this region. Clearly, the
techniques for dealing with energy conservation in the
AN method deserve further investigation.
Above 12 eV the present results are lower than the R-

matrix results. This is to be expected, since the R-matrix
calculation included fewer states in the close-coupling ex-
pansion, in the same way that the CC(12) model pro-
duced a larger FN cross section than the CCC(491)
model at these energies. The calculation of Celiberto
et al. [17] is in good agreement with the measurements
of Nishimura and Danjo [6], and passes through or just
below the lower error-bounds of Khakoo and Segura [7]
and Hall and Andric [8]. The peak predicted by Ce-
liberto et al. [17] is significantly lower than the recom-
mended data [9], which follows the peak of Khakoo and
Segura [7]. The Celiberto et al. [17] results are semi-
classical and are not expected to be correct at low ener-
gies. Despite the differences between the three calcula-
tions, they all predict a cross section substantially lower
than the recommended data around 15 eV. This quali-
tative agreement between all three theoretical methods
indicates that the experiments have likely overestimated
the true cross section. This is unlikely due to cascades
from higher triplet states as the ICS were obtained by in-
tegrating over DCS measurements, which were obtained
by measuring the electron energy-loss spectrum. At 15
eV the energy-loss spectra for the higher states overlap
the b 3Σ+

u spectrum by approximately 20% [7], which can-
not account for the large difference between the theory
and experiments. The accuracy of the CCC b 3Σ+

u cross
section is supported by the excellent agreement of the
CCC total cross section with experiment [15]. The cal-
culations of Rescigno and Schneider [18] were performed
at just a few energies, with no calculations performed
below 12 eV. These calculations predicted a peak near
15 eV, in disagreement with the present results and the
calculations of Trevisan and Tennyson [16].

D. Differential cross sections

In Fig. 5 we present the b 3Σ+
u DCS at Ein = 9.2 eV,

compared with the measurements of Khakoo and Segura
[7]. The CCC calculations were not previously available
at 9.2 eV [15] since the b 3Σ+

u excitation is closed in the
FN model at this energy. The low energy b 3Σ+

u DCS were
also calculated by Trevisan and Tennyson [16] using the
AN R-matrix method, however, they were affected by an
error in the accounting of phase factors [40], and hence
we exclude them here and in the remaining DCS figures.
In Fig. 6 we present the b 3Σ+

u DCS at incident en-
ergies of 10.2 and 10.5 eV. We compare with the mea-
surements of Khakoo and Segura [7] (10.2 eV) and Hall
and Andric [8] (10.5 eV). The CCC 10.2 eV DCS is in
good agreement with the Khakoo and Segura [7] measure-
ments. The measurements of Hall and Andric [8] show a
flattening of the DCS between 90 and 120 degrees, while
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3Σ+
u state of H2 at 9.2 eV, calculated with the AN

CC(12) model described in the text, and compared with the
experiment of Khakoo and Segura [7].

the Khakoo and Segura [7] experiment shows a sharp rise
in the same region. Although the present 10.5 eV results
and the measurements of Hall and Andric [8] are in agree-
ment up to 90 degrees, they do not agree at backwards
scattering angles.

In Fig. 7 we present the b 3Σ+
u DCS at Ein = 12 eV.
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FIG. 6: Same as in Fig. 5 but at 10.2 and 10.5 eV, and in-
cluding the measurements of Hall and Andric [8].

We compare with the measurements of Khakoo and Se-
gura [7] (12.2 eV), Nishimura and Danjo [6] (12 eV), and
Hall and Andric [8] (12 eV). At this energy we expect
the vibrational motion effects are still important, which
is illustrated by the quantitative and qualitative differ-
ences between the AN and FN results. While the CC(12)
FN DCS is in good agreement with the measurements of
Khakoo and Segura [7], the CC(12) AN DCS is in good
agreement with the Nishimura and Danjo [6] measure-
ments, and with the Hall and Andric [8] measurements
above 50 degrees. The 12 eV DCS here and in the follow-
ing section for the isotopologues have been scaled down
by approximately 2% to be consistent with the recom-
mended CCC AN ICS, which was scaled down above 11.5
eV to connect to the CCC(491) results.

Performing the AN calculations results in a flatter DCS
than is seen in the FN (R = 1.448) results. This is a re-
sult of the flatter FN DCS at R values to either side
of R = 1.448, within the range which makes the most
significant contribution to the AN DCS. At backwards
scattering angles, the measurements of Hall and Andric
[8] appear flatter than both the present calculations and
the two other measurements. Given the relatively large
error bars at these angles, however, this is not particu-
larly significant.

E. The isotope effect

In the present CCC formulation, the electronic and
nuclear degrees of freedom are separated using the Born-
Oppenheimer approximation, and hence the electronic
structure and FN collision data are identical among the
isotopologues H2, D2, T2, HD, HT, and DT. However,
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the AN cross sections differ for the isotopologues due
to the difference in the ground state vibrational wave
function. The increased reduced mass of the heavier
isotopologues causes the ground state vibrational wave
function to become contracted, and display a larger prob-
ability density near the mean internuclear separation (see
Fig. 8). At low energies the excitation threshold of the R-
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FIG. 8: Probability density functions of the ground vibra-
tional state for H2 and its isotopologues. The R-dependent
excitation cross sections of the b

3Σ+
u state at 9.2 and 12.2 eV

are also shown.

dependent cross section shifts to larger R, and hence the

smaller probability density of the vibrational wave func-
tion at larger R for the heavier isotopologues leads to a
reduced AN cross section. This is illustrated in Fig. 8
by the R dependent ICS at 9.2 eV. At larger energies,
such as 12.2 eV, the excitation threshold shifts to lower
R, and the isotope effect is less pronounced.
In Fig. 9 we compare the recommended CCC AN ICS

for the isotopologues of H2. These have been constructed
in the same manner as the H2 ICS in Fig. 4. There is a
strong isotope effect at incident energies up to approxi-
mately 11.5 eV, above which there are minor differences
between the different species.
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FIG. 9: Electron impact excitation cross section of the b
3Σ+

u

state of H2, D2, T2, HD, HT, and DT, calculated using the
AN CC(12) model described in the text.

In Figs. 10-12 we compare the DCS for the isotopo-
logues of H2 at Ein = 9.2, 10.2, and 12 eV, respectively.
As for the ICS, the isotope effect is stronger at lower in-
cident electron energies. The 9.2 and 10.2 eV DCS are
decreased significantly at backwards scattering angles for
the heavier isotopologues, leading to a flattening of the
overall DCS. At Ein = 12 eV there are no significant
differences in the DCS for the different species.

V. CONCLUSIONS

We have calculated integrated and differential cross
sections for low-energy electron-impact excitation of the
b 3Σ+

u state of H2 and its isotopologues in the AN ap-
proximation. Below 12 eV our ICS results are in good
agreement with the measurements of Khakoo and Segura
[7] and Hall and Andric [8], and with the previous AN
R-matrix calculations of Trevisan and Tennyson [16], but
are somewhat larger than the semi-classical calculations
of Celiberto et al. [17]. Above approximately 12.5 eV
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FIG. 11: Same as in Fig. 10 but at 10.2 eV.

the present results are substantially lower than both the
semi-classical [17] and R-matrix [16] calculations, and all
three calculations are systematically lower than the rec-
ommended data of Yoon et al. [9] in this region. The
discrepancy between the three calculations and the rec-
ommended data deserves further investigation. For the
DCS we have produced the first set of theoretical b 3Σ+

u

cross sections that are in good agreement with the avail-
able experiments in the low-energy regime from 9.2 to 12
eV.
We have shown that the ICS and DCS are highly sen-

sitive to the isotopologue effect at energies below 12 eV,
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FIG. 12: Same as in Fig. 10 but at 12 eV.

and expect that this can be of importance for model-
ing low temperature plasmas containing these species.
Above 13 eV the AN calculations are in reasonable agree-
ment with the corresponding FN results and, therefore,
the much computationally cheaper FN approach is suf-
ficiently accurate. The reasons for the disagreement be-
tween the AN and FN results at low energies, and agree-
ment at high energies, have been discussed and explained.
We have presented our recommended ICS, which connect
the present AN results to the previously published [15]
CCC FN results.

The theoretical techniques utilized in the present work
can be extended to low-energy excitations of excited elec-
tronic states, scattering from hot (vibrationally excited)
targets, and calculations of fully vibrationally resolved
excitations. If the energy of the scattered electron is com-
parable to the vibrational level spacings, a fully quantum-
mechanical treatment of the nuclear motion, such as vi-
brational close-coupling, may be required. However, the
present techniques are likely to be sufficiently accurate
at energies of interest in plasma modeling applications.
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